
forcepoint.com

Doc Title

Protector Stats API
Configuration Guide

Protector Stats API Configuration Guide

© 2023 Forcepoint Public 1

Protector Stats API

Description

The provided code is a Node.js application that utilizes various modules to create an API server for retrieving

server statistics, processing and logging server logs and exporting logs in CSB format. This guide breaks down the

code to understand its functionality.

Required Modules

The code requires the following modules, which should be installed beforehand:

`express`: A web application framework for Node.js that simplifies the process of building APIs.

`child_process`: A built-in Node.js module that allows executing shell commands.

`prettier`: A module for formatting JSON responses.

`http`: A built-in Node.js module for creating HTTP servers.

`fs`: A built-in Node.js module for working with the file system.

`csv-writer`: A module for creating CSV files.

Server Setup

The code initializes an Express application and creates an HTTP server using http.createServer().

```javascript 
const express = require('express'); 
const { exec } = require('child_process'); 
const prettier = require('prettier'); 
const http = require('http'); 
const fs = require('fs'); 
const csv = require('csv-writer').createObjectCsvWriter; 
const app = express(); 
const server = http.createServer(app); 
```  

API Endpoints

The code defines several API endpoints using the app.get() method from Express. The endpoints are as follows:

1. "/server-stats": This endpoint retrieves ICAP statistics by executing the command info stats. It processes

the command output, extracts relevant statistics and sends a formatted JSON response to the client.

Additionally, it appends the latest log entry to a log file.

2. "/server-data": This endpoint returns the current timeSeriesData array, which contains ICAP logs in JSON

format.

3. "/server-csv": This endpoint prepares a CSV writer and transforms timeSeriesData by separating the text

and number in the message field. It then writes the transformed data to a CSV file named logs.csv and

sends the file as a download to the client.

Protector Stats API Configuration Guide

© 2023 Forcepoint Public 2


```javascript 
app.get('/server-stats', (req, res) => { 
// Code for retrieving server stats and generating JSON response 
}); 
app.get('/server-data', (req, res) => { 
// Code for returning timeSeriesData as JSON response 
}); 
app.get('/server-csv', (req, res) => { 
// Code for preparing CSV writer, transforming data, and writing to CSV file 
}); 
``` 


Command Execution and Output Processing

The code uses the exec() function from the child_process module to execute the shell command info stats. It

captures the command output, processes it and extracts relevant statistics and logs.

```javascript 
exec('info stats', (error, stdout, stderr) => { 
// Code for handling command execution, output processing, and log appending 
}); 
``` 

Log Processing and Storage

The code defines a helper function called processOutput() to process the command output and extract statistics. It

splits the output into lines, filters the lines containing the word icap, generates JSON logs for each filtered line and

appends the logs to the timeSeriesData array.

```javascript 
function processOutput(output) { 
// Code for splitting output, filtering lines, generating logs, and storing them in timeSeriesData 
} 
``` 


Response Formatting and Sending

The code uses the prettier module to format the JSON response before sending it to the client. It converts the

response object to a JSON string and formats it using prettier's format() function with the JSON parser.

```javascript 
const formattedResponse = prettier.format(JSON.stringify(response), { parser: 'json' }); 
``` 

The formatted response is then sent as a JSON response using res.type().send().

```javascript 
res.type('application/json').send(formattedResponse); 
``` 


Log File Appending

After sending the JSON response, the code appends the latest log entry to a log file named logs.txt. It retrieves the

latest log entry from timeSeriesData and formats it as a log text. The log text is then appended to the file using the

fs.appendFile() function.

```javascript 
const logEntry = timeSeriesData[timeSeriesData.length - 1]; 
const logText = `[${logEntry.time}] ${logEntry.message}\n`; 
fs.appendFile('logs.txt', logText, (err) => { 
// Code for handling log appending errors 
}); 
``` 


Protector Stats API Configuration Guide

© 2023 Forcepoint Public 3

CSV File Creation and Download

For the /server-csv endpoint, the code prepares a CSV writer using the csv-writer module. It defines the file path

and the CSV header, which includes various column titles.

```javascript 
const csvWriter = csv({ 
path: 'logs.csv', 
header: [ 
{ id: 'time', title: 'Time' }, 
{ id: 'messageText', title: 'Message (Text)' }, 
{ id: 'messageNumber', title: 'Message (Number)' }, 
{ id: 'host', title: 'Host' }, 
{ id: 'source', title: 'Source' }, 
{ id: 'sourcetype', title: 'Sourcetype' }, 
{ id: 'index', title: 'Index' }, 
], 
}); 
``` 
The code then transforms the timeSeriesData array by extracting the text and number from the message field for

each log entry. It creates a new array of objects with additional fields messageText and messageNumber.

Finally, the transformed data is written to the CSV file using the CSV writer's writeRecords() function. Upon

successful creation of the CSV file, it is sent as a download to the client using res.download().

```javascript 
csvWriter 
.writeRecords(transformedData) 
.then(() => { 
// Code for successful CSV creation and file download 
}) 
.catch((err) => { 
// Code for handling CSV creation errors 
}); 
 

Server Startup 

The code listens for incoming connections on the specified port (3000) using server.listen(). 

```javascript 
const port = 3000;
server.listen(port, () => {
console.log(`API server running on port ${port}`);
});
``` 
 

Conclusion  

The provided code uses the Node.js application that creates an API server for retrieving ICAP statistics and 

exporting logs in CSV format. It utilizes various modules such as express, child_process, prettier, http, fs and 

csv-writer to achieve these functionalities. The code defines API endpoints for different operations and includes 

helper functions for processing command output, formatting, responses, and handling file operations. 

 

    

 

 

 

               



Protector Stats API Configuration Guide  

 

© 2023 Forcepoint          Public 4 

 
 
 

 
 
 

   

 

 

 

 

 
 
 
 
 
 
 
 
 

 

About Forcepoint 

 
Forcepoint simplifies security for global businesses and 

governments. Forcepoint’s all-in-one, truly cloud-native platform 

makes it easy to adopt Zero Trust and prevent the theft or loss 

of sensitive data and intellectual property no matter where 

people are working. Based in Austin, Texas, Forcepoint creates 

safe, trusted environments for customers and their employees 

in more than 150 countries. Engage with Forcepoint on 

www.forcepoint.com, Twitter and LinkedIn. 

forcepoint.com/contact 
 

© 2023 Forcepoint. Forcepoint and the FORCEPOINT logo are trademarks of Forcepoint. 

All other trademarks used in this document are the property of their respective owners.  

[Protector Stats API Configuration Guide] 13Nov2023 

 

http://www.forcepoint.com/
https://twitter.com/forcepointsec
https://www.linkedin.com/company/forcepoint/

